Last time we introduced map $Z\left(L_{i} \lambda_{1}, \ldots, \lambda_{m}\right)$ as a composition of maps $Z_{j}, 0 \leqslant j \leqslant s-1$ Z is a \mathbb{C}-number as it is a linear mop

$$
\begin{aligned}
Z: V\left(t_{0}\right) & \longrightarrow V\left(t_{s}\right) \\
\mathbb{C}^{\prime \prime} & \mathbb{C}^{\prime \prime}
\end{aligned}
$$

Now flatness of $K Z$ connection gives:
Lemma 1:
$Z\left(L_{i} \lambda_{1}, \ldots, \lambda_{m}\right)$ is invariant under the local horizontal moves below

These are also called "Reidemeister moves"

Next, we want to interpret Z in the context of Chern-Simons theory
\rightarrow restrict to 4 conformal primaries in spin λ representation of $\operatorname{su}(2)$ at each time slice
\rightarrow vacuum to vacuum amplitude can be expressed as

Next, define

as the unique unknot with two minimal and two maximal points and set

$$
d(\lambda)=Z\left(K_{0} ; \lambda\right)^{-1}
$$

Define $\mu(j)=\#$ maximal points in L_{j}

$$
\rightarrow J\left(L_{i} \lambda_{1}, \ldots, \lambda_{m}\right)=d\left(\lambda_{1}\right)^{\mu(1)} \ldots d\left(\lambda_{m}\right)^{\mu(m)} Z\left(L_{i} \lambda_{1}, \cdots \lambda_{m}\right)
$$

Theorem 1:
$7\left(L_{i} \lambda_{1}, \ldots, \lambda_{m}\right)$ is an invariant of a colored oriented framed link.
Proof:
Suppose $L^{\prime}=L_{1}^{\prime} U \ldots U L_{m}^{\prime}$ is an equivalent link, ie. \exists orientation preserving homeomorphism h of S^{3} st. $h\left(L_{j}\right)=L_{j}^{\prime}, \quad 1 \leqslant j \leqslant m$ Have to show: $J(L)=7\left(L^{\prime}\right)$
$L^{\prime} \longleftrightarrow L$ if and only if L^{\prime} is obtained from L through a sequence of Reidemeister moves and a cancellation of two critical points
(*)

Lemma 1 shows invariance of Z under Reidemeister moves
\rightarrow have to show invariance under ($*$)

$$
\begin{aligned}
& L^{\prime}=L+K_{0} \\
& \Rightarrow Z\left(L_{i}^{\prime} \lambda_{1}, \ldots, \lambda_{m}\right)=Z\left(K_{0 i} \lambda_{j}\right) Z\left(L_{i} \lambda_{1}, \ldots, \lambda_{m}\right)
\end{aligned}
$$

$\rightarrow J\left(L_{i}, \lambda_{1}, \ldots, \lambda_{m}\right)$ is invariant under a cancellation of critical points
Proposition 1:
Let L^{\prime} be a link obtained from $L=\bigcup_{j=1}^{m} L_{j}$. by increasing the framing of the component L_{j} by $1 \rightarrow J\left(L_{;}^{\prime} \lambda_{1}, \ldots, \lambda_{m}\right)=\exp 2 \pi \sqrt{-1} \Delta_{j} . j\left(L_{i} \lambda_{1}, \ldots, \lambda_{m}\right)$

Proof:
Increase of framing by 1 means: cross-section:

or $z_{j} \cdot \longrightarrow e^{\pi i} z_{j}$
We know that under $\omega_{j}=\frac{a z_{j}+b}{c z_{j}+d}$
conformal blocks $\psi_{0}\left(z_{1}, \ldots, z_{n}\right)$ transform as

$$
\psi_{0}\left(z_{1}, \ldots, z_{n}\right)=\prod_{j=1}^{n}\left(c z_{j}+d\right)^{-2 \Delta \lambda_{j}} \psi_{0}\left(\omega_{1}, \ldots, \omega_{n}\right)
$$

or for $z_{j} \longmapsto \alpha z_{j}: \psi_{0}\left(z_{1}, \ldots, z_{n}\right)=\alpha^{2 \Delta \lambda_{j}} \psi_{0}\left(\omega_{1}, \ldots, \omega_{n}\right)$ set $\alpha=e^{\pi \sqrt{-1}}$
Notation: In the case $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}=1$, we write I_{L} for $I(L ; \lambda, \ldots, \lambda)$
Consider the links

and identical outside S^{3}.

Proposition 2:
set $q^{1 / m}=\exp \left(\frac{2 \pi \sqrt{-1}}{m(k+2)}\right)$
The link invariant γ_{L} satisfies the skein relation

$$
q^{1 / 4} \gamma_{L_{+}}-q^{-1 / 4} \gamma_{L_{-}}=\left(q^{1 / 2}-q^{-1 / 2}\right) \gamma_{L_{0}}(*)
$$

Proof:
We have seen that the monodromy matrix $\rho\left(\sigma_{1}\right)$ acts an conformal blocks as

$$
\rho\left(\sigma_{1}\right)=P_{12} \exp \left(\pi \sqrt{-1} \Omega_{12} / k\right), k=k+2
$$

The matrix Ω_{12} / k is diagonalized with eigenvalues

$$
\Delta_{\lambda}-\Delta_{\lambda_{1}}-\Delta_{\lambda_{2}}
$$

Since $\lambda_{1}=\lambda_{2}=1$ we get from
Clebsch-Gordan rule $\lambda=0,2$
Recall $\Delta_{2 j}=\frac{j(j+1)}{k+2} \Rightarrow \Delta_{0}=0, \Delta_{1}=\frac{3 / 4}{k+2}$,

$$
\Delta_{2}=\frac{2}{k+2}
$$

Set $G_{i}=\rho\left(\sigma_{i}\right)$. Then we have

$$
\begin{aligned}
& \left(G_{i}+q^{-3 / 4}\right)\left(G_{i}-q^{1 / 4}\right) \\
= & G_{i}^{2}-G_{i} q^{1 / 4}+q^{-3 / 4} G_{i}-q^{-1 / 2}=0
\end{aligned}
$$

This is equivalent to

$$
\begin{aligned}
& q^{1 / 4} G_{i}-q^{-1 / 4} G_{i}^{-1}=\left(q^{1 / 2}-q^{-1 / 2}\right) \mathbb{1} \\
\Gamma & \langle 0| \rho\left(L_{-}\right) \rho\left(\sigma_{i}\right) \rho\left(L_{+}\right)|0\rangle \\
= & \sum_{\lambda_{\mu} \mu}\langle 0| \rho\left(L_{-}\right)\left|x_{\lambda}\right\rangle\left\langle x_{\lambda}\right| \rho\left(\sigma_{i}\right)\left|x_{\mu}\right\rangle\left\langle x_{\mu}\right| \rho\left(L_{+}\right)|0\rangle \\
= & \sum_{\lambda}\langle 0| \rho\left(L_{-}\right)\left|x_{\lambda}\right\rangle\left\langle x_{\lambda}\right| \rho\left(\sigma_{i}\right)\left|x_{\lambda}\right\rangle\left\langle x_{\lambda}\right| \rho\left(L_{+}\right)|0\rangle
\end{aligned}
$$

Interpretation:
Consider the space of conformal blocks \mathcal{H} an $\mathbb{C} \mathbb{P}^{\prime}$ with four points and highest weights $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$. In our case: $\lambda, \lambda, \lambda^{*}, \lambda^{*}$

There exists a vector $\omega \in \mathcal{C}^{*}$ such that

$$
\gamma_{L_{+}}=\left\langle\omega \mid v_{+}\right\rangle, \gamma_{L_{-}}=\left\langle\omega \mid v_{-}\right\rangle, \gamma_{L_{\sigma}}=\left\langle\omega, v_{0}\right\rangle
$$

where $\langle 1\rangle: \mathcal{F}{ }^{*} \times \mathcal{X} \rightarrow \mathbb{C}$ is natural pairing $\operatorname{dim} H=2$:

- if primaries 1 and 2 fuse to $\lambda=0$, then 3 and 4 must as well
- if primaries 1 and 2 fuse to $\lambda=2$, then 3 and 4 must as well.

$$
\begin{aligned}
& \Rightarrow \alpha v_{+}+\beta v_{-}+\gamma v_{0}=0 \\
& \rightarrow \alpha \gamma_{+}+\beta \gamma_{L_{-}}+\gamma \gamma_{L_{0}}=0
\end{aligned}
$$

α, β and γ are determined by (*).
Note: Our invariant J_{L} depends an the framing. To cure this, denote by $w(L)$ the "writhe" of L (\# positive crossings - \#negative crossings), and $\operatorname{set} P_{L}=d(1)^{-1} \exp (-2 \pi \sqrt{-1} \Delta, \omega(L)) \gamma_{L}$

